If $\frac{d}{{dx}}\,G\left( x \right) = \frac{{{e^{\tan \,x}}}}{x},\,x \in \left( {0,\pi /2} \right)$, then $\int\limits_{1/4}^{1/2} {\frac{2}{x}} .{e^{\tan \,\left( {\pi \,{x^2}} \right)}}dx$ is equal to
$G\left( {\pi /4} \right) - G\left( {\pi /16} \right)$
$2\left[ {G\left( {\pi /4} \right) - G\left( {\pi /16} \right)} \right]$
$\pi \left[ {G\left( {1/2} \right) - G\left( {1/4} \right)} \right]$
$G\left( {1/\sqrt 2 } \right) - G\left( {1/2} \right)$
A quadratic polynomial $P(x)$ satisfies the conditions, $P(0) = P(1) = 0\, \&\,\int\limits_0^1 {} P(x) dx = 1$. The leading coefficient of the quadratic polynomial is :
If ${I_1} = \int_0^1 {{2^{{x^2}}}dx,\;} {I_2} = \int_0^1 {{2^{{x^3}}}dx} ,\;{I_3} = \int_1^2 {{2^{{x^2}}}dx} $,${I_4} = \int_1^2 {{2^{{x^3}}}dx} $, then
Let for $x \in R , S_0( x )= x$,$S _{ k }( x )= C _{ k } x + k \int _0^{ x } S _{ k -1}(t) d t$, where $C _0=1, C _{ k }=1-\int_0^1 S _{ k -1}( x ) dx , k =1,2,3 \ldots$. Then $S _2(3)+6 C _3$ is equal to $...........$.
For $x \in R$, let $f(x)=|\sin x|$ and $g(x)=\int_0^x f(t) d t .$ Let $p(x)=g(x)-\frac{2}{\pi} x$ Then
Let $J=\int_0^1 \frac{x}{1+x^8} d x$
Consider the following assertions:
$I$. $J>\frac{1}{4}$
$II$. $J<\frac{\pi}{8}$ Then,